Novel roles of ohrR-ohr in Xanthomonas sensing, metabolism, and physiological adaptive response to lipid hydroperoxide.
نویسندگان
چکیده
Lipid hydroperoxides are highly toxic to biological systems. Here, the Xanthomonas campestris pv. phaseoli sensing and protective systems against linoleic hydroperoxide (LOOH) were investigated by examining the phenotypes, biochemical and regulatory characteristics of various Xanthomonas mutants in known peroxide resistance pathways. Analysis of LOOH resistance levels indicates that both alkyl hydroperoxide reductase (AhpC) and organic hydroperoxide resistance enzyme (Ohr) have important and nonredundant roles in the process. Nonetheless, inactivation of ohr leads to a marked reduction in LOOH resistance levels. The regulatory characteristics of an ohr mutant add further support to its primary role in LOOH protection. Northern analysis shows that LOOH had differential effects on induction of ahpC and ohr expression with the latter being more sensitive to the inducer. Analysis of the ahpC and ohr promoters confirmed that the LOOH-dependent induction of these promoters is mediated by the transcription regulators OxyR and OhrR, respectively. Using the in vivo promoter assays and the in vitro gel mobility shift assay, we show that LOOH directly oxidized OhrR at the sensing residue Cys-22 leading to its inactivation. In addition, physiological analysis shows that pretreatment of X. campestris pv. phaseoli with a sublethal dose of LOOH induced high levels of resistance to subsequent exposure to lethal concentrations of LOOH. This novel LOOH-induced adaptive response requires a functional ohrR-ohr operon. These data illustrate an important novel physiological role for the ohrR-ohr system in sensing and inactivating lipid hydroperoxides.
منابع مشابه
ohrR and ohr are the primary sensor/regulator and protective genes against organic hydroperoxide stress in Agrobacterium tumefaciens.
The genes involved in organic hydroperoxide protection in Agrobacterium tumefaciens were functionally evaluated. Gene inactivation studies and functional analyses have identified ohr, encoding a thiol peroxidase, as the gene primarily responsible for organic hydroperoxide protection in A. tumefaciens. An ohr mutant was sensitive to organic hydroperoxide killing and had a reduced capacity to met...
متن کاملComplex regulation of the organic hydroperoxide resistance gene (ohr) from Xanthomonas involves OhrR, a novel organic peroxide-inducible negative regulator, and posttranscriptional modifications.
Analysis of the sequence immediate upstream of ohr revealed an open reading frame, designated ohrR, with the potential to encode a 17-kDa peptide with moderate amino acid sequence homology to the MarR family of negative regulators of gene expression. ohrR was transcribed as bicistronic mRNA with ohr, while ohr mRNA was found to be 95% monocistronic and 5% bicistronic with ohrR. Expression of bo...
متن کاملNovel organic hydroperoxide-sensing and responding mechanisms for OhrR, a major bacterial sensor and regulator of organic hydroperoxide stress.
Xanthomonas campestris pv. phaseoli OhrR belongs to a major family of multiple-cysteine-containing bacterial organic hydroperoxide sensors and transcription repressors. Site-directed mutagenesis and subsequent in vivo functional analyses revealed that changing any cysteine residue to serine did not alter the ability of OhrR to bind to the P1 ohrR-ohr promoter but drastically affected the organi...
متن کاملOhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis.
Bacillus subtilis displays a complex adaptive response to the presence of reactive oxygen species. To date, most proteins that protect against reactive oxygen species are members of the peroxide-inducible PerR and sigma(B) regulons. We investigated the function of two B. subtilis homologs of the Xanthomonas campestris organic hydroperoxide resistance (ohr) gene. Mutational analyses indicate tha...
متن کاملExposure to cadmium elevates expression of genes in the OxyR and OhrR regulons and induces cross-resistance to peroxide killing treatment in Xanthomonas campestris.
Cadmium is an important heavy metal pollutant. For this study, we investigated the effects of cadmium exposure on the oxidative stress responses of Xanthomonas campestris, a soil and plant pathogenic bacterium. The exposure of X. campestris to low concentrations of cadmium induces cross-protection against subsequent killing treatments with either H2O2 or the organic hydroperoxide tert-butyl hyd...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 187 9 شماره
صفحات -
تاریخ انتشار 2005